Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Autonomous mobile robots (AMRs) are capable of carrying out operations continuously for 24/7, which enables them to optimize tasks, increase throughput, and meet demanding operational requirements. To ensure seamless and uninterrupted operations, an effective coordination of task allocation and charging schedules is crucial while considering the preservation of battery sustainability. Moreover, regular preventive main- tenance plays an important role in enhancing the robustness of AMRs against hardware failures and abnormalities during task execution. However, existing works do not consider the influence of properly scheduling AMR maintenance on both task downtime and battery lifespan. In this paper, we propose MTC, a maintenance-aware task and charging scheduler designed for fleets of AMR operating continuously in highly automated envi- ronments. MTC leverages Linear Programming (LP) to first help decide the best time to schedule maintenance for a given set of AMRs. Subsequently, the Kuhn-Munkres algorithm, a variant of the Hungarian algorithm, is used to finalize task assignments and carry out the charge scheduling to minimize the combined cost of task downtime and battery degradation. Experimental results demonstrate the effectiveness of MTC, reducing the combined total cost up to 3.45 times and providing up to 68% improvement in battery capacity degradation compared to the baselines.more » « less
-
We design a parallel algorithm for the Constrained Shortest Path (CSP) problem. The CSP problem is known to be NP-hard and there exists a pseudo-polynomial time sequential algorithm that solves it. To design the parallel algorithm, we extend the techniques used in the design of the Δ-stepping algorithm for the single-source shortest paths problem.more » « less
-
null (Ed.)In Vehicular Edge Computing (VEC) systems, the computing resources of connected Electric Vehicles (EV) are used to fulfill the low-latency computation requirements of vehicles. However, local execution of heavy workloads may drain a considerable amount of energy in EVs. One promising way to improve the energy efficiency is to share and coordinate computing resources among connected EVs. However, the uncertainties in the future location of vehicles make it hard to decide which vehicles participate in resource sharing and how long they share their resources so that all participants benefit from resource sharing. In this paper, we propose VECMAN, a framework for energy-aware resource management in VEC systems composed of two algorithms: (i) a resource selector algorithm that determines the participating vehicles and the duration of resource sharing period; and (ii) an energy manager algorithm that manages computing resources of the participating vehicles with the aim of minimizing the computational energy consumption. We evaluate the proposed algorithms and show that they considerably reduce the vehicles computational energy consumption compared to the state-of-the-art baselines. Specifically, our algorithms achieve between 7% and 18% energy savings compared to a baseline that executes workload locally and an average of 13% energy savings compared to a baseline that offloads vehicles workloads to RSUs.more » « less
-
Edge computing allows end-user devices to offload heavy computation to nearby edge servers for reduced latency, maximized profit, and/or minimized energy consumption. Data-dependent tasks that analyze locally-acquired sensing data are one of the most common candidates for task offloading in edge computing. As a result, the total latency and network load are affected by the total amount of data transferred from end-user devices to the selected edge servers. Most existing solutions for task allocation in edge computing do not take into consideration that some user tasks may actually operate on the same data items. Making the task allocation algorithm aware of the existing data sharing characteristics of tasks can help reduce network load at a negligible profit loss by allocating more tasks sharing data on the same server. In this paper, we formulate the data sharing-aware task allocation problem that make decisions on task allocation for maximized profit and minimized network load by taking into account the data-sharing characteristics of tasks. In addition, because the problem is NP-hard, we design the DSTA algorithm, which finds a solution to the problem in polynomial time. We analyze the performance of the proposed algorithm against a state-of-the-art baseline that only maximizes profit. Our extensive analysis shows that DSTA leads to about 8 times lower data load on the network while being within 1.03 times of the total profit on average compared to the state-of-the-art.more » « less
An official website of the United States government
